C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name: Ring Theory

Subject Code: 4SC06RIT1		Branch: B.Sc.(Mathematics)	
Semester: 6	Date : 30/04/2019	Time : 10:30 To 01:30	Marks : 70
Instructions:			

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the following questions:	(14)
-	a)	Define: Boolean Ring	(01)
	b)	What do you mean by right cosets?	(01)
	c)	Give an example of division ring.	(01)
	d)	True/false: Every integral domain is field.	(01)
	e)	Define : Subring.	(01)
	f)	State Division Algorithm for polynomials.	(01)
	g)	Write the unit element of $Z_5 - \{0\}$.	(01)
	h)	5 ()	(01)
	i)	Is $Z_6 - \{0\}$ becomes field ? justify your answer.	(02)
	j)	State unique factorization of polynomial.	(02)
	k)		(02)
Atter	npt an	y four questions from Q-2 to Q-8	
Q-2		Attempt all questions	(14)
-	a)	State and properties of ring.	(05)
	b)	Let $(M_2(Z); +; \cdot)$ be a ring. Check whether the $I = \{ \begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix} a, b \in \mathbb{Z} \}$ is an	(05)
		ideal of $M_2(Z)$ or not.	
	c)	Prove that field is an integral domain.	(04)
Q-3	-,	Attempt all questions	(14)
χ	a)	Find the grad of $f(x) = (x^3 + Ex^2 - 2x + 2E)$ and $g(x) = 2x^2 - 2x + E$	(05)

- a) Find the g.c.d of $f(x) = 6x^3 + 5x^2 2x + 25$ and $g(x) = 2x^2 3x + 5$ (05) $\in R[x]$ and express it in the form $a(x) \cdot f(x) + b(x) \cdot g(x)$. b) If a commutative ring P with unity has no proper ideal, then prove that P is a (05)
- b) If a commutative ring R with unity has no proper ideal, then prove that R is a (05) field.
- c) A ring R is commutative if $a^2 = a$ for each $a \in R$. (04)

Q-4Attempt all questions(14)a)A non empty subset U of a ring R is a subring of R if and only if the(05)

- (05) A non empty subset U of a ring R is a subring of R if and only if the following conditions are satisfied.
 - i) $a-b \in U$ and ii) $ab \in U$ for $a, b \in U$

 homomorphism or identity mapping. c) Show that intersection of two subring is again subring. Q-5 Attempt all questions a) If we define addition and multiplication on power set P(U),U being the universal set as follows, for A, B ∈ P(U), A + B = AΔB = (A ∪ B) - (A ∩ B) and AB = A ∩ B then show that (P(U), +,·) is a ring. b) Suppose (R; +; ·) is a ring with unity. Define addition ⊕ and multiplicati O in R as follows a⊕b = a + b + 1 and aOb = a + b + ab fora, b ∈ R then show that (R; ⊕; O) is a ring. c) The characteristic of an integral domain is either a prime number or zero. Q-6 Attempt all questions a) Obtain all principal ideals in the ring (Z₁₂; +₁₂; ·₁₂). b) Let I = 8Z in the ring R = (2Z; +; ·) prepare addition and multiplicatio table for the quotient ring R \ I. c) The characteristic of a ring R with unity is n if and only if n is the smalle positive integer with n · 1 = 0. 	(04) (14) (05)
 Q-5 Attempt all questions a) If we define addition and multiplication on power set P(U),U being the universal set as follows, for A, B ∈ P(U), A + B = AΔB = (A ∪ B) - (A ∩ B) and AB = A ∩ B then show that (P(U), +, ·) is a ring. b) Suppose (R; +; ·) is a ring with unity. Define addition ⊕ and multiplicati O in R as follows a⊕b = a + b + 1 and aOb = a + b + ab fora, b ∈ R then show that (R; ⊕; O) is a ring. c) The characteristic of an integral domain is either a prime number or zero. Q-6 Attempt all questions a) Obtain all principal ideals in the ring (Z₁₂; +₁₂; ·₁₂). b) Let I = 8Z in the ring R = (2Z; +; ·) prepare addition and multiplication table for the quotient ring R \I. c) The characteristic of a ring R with unity is n if and only if n is the smaller positive integer with n · 1 = 0. 	(14)
 a) If we define addition and multiplication on power set P(U),U being the universal set as follows, for A, B ∈ P(U), A + B = AΔB = (A ∪ B) - (A ∩ B) and AB = A ∩ B then show that (P(U), +,·) is a ring. b) Suppose (R; +; ·) is a ring with unity. Define addition ⊕ and multiplicati O in R as follows a⊕b = a + b + 1 and aOb = a + b + ab fora, b ∈ R then show that (R; ⊕; O) is a ring. c) The characteristic of an integral domain is either a prime number or zero. Q-6 Attempt all questions a) Obtain all principal ideals in the ring (Z₁₂; +₁₂; ·₁₂). b) Let I = 8Z in the ring R = (2Z; +; ·) prepare addition and multiplicatio table for the quotient ring R \I. c) The characteristic of a ring R with unity is n if and only if n is the smalle positive integer with n · 1 = 0. 	• • •
 universal set as follows, for A, B ∈ P(U), A + B = AΔB = (A ∪ B) - (A ∩ B) and AB = A ∩ B then show that (P(U), +,·) is a ring. b) Suppose (R; +; ·) is a ring with unity. Define addition ⊕ and multiplicati ⊙ in R as follows a⊕b = a + b + 1 and a⊙b = a + b + ab fora, b ∈ R then show that (R; ⊕; ⊙) is a ring. c) The characteristic of an integral domain is either a prime number or zero. Q-6 Attempt all questions a) Obtain all principal ideals in the ring (Z₁₂; +₁₂; ·₁₂). b) Let I = 8Z in the ring R = (2Z; +; ·) prepare addition and multiplicatio table for the quotient ring R \I. c) The characteristic of a ring R with unity is n if and only if n is the smalle positive integer with n · 1 = 0. 	(05)
 A + B = AΔB = (A ∪ B) - (A ∩ B) and AB = A ∩ B then show that (P(U), +,·) is a ring. b) Suppose (R; +; ·) is a ring with unity. Define addition ⊕ and multiplicati ⊙ in R as follows a⊕b = a + b + 1 and a⊙b = a + b + ab fora, b ∈ R then show that (R; ⊕; ⊙) is a ring. c) The characteristic of an integral domain is either a prime number or zero. Attempt all questions a) Obtain all principal ideals in the ring (Z₁₂; +₁₂; ·₁₂). b) Let I = 8Z in the ring R = (2Z; +; ·) prepare addition and multiplicatio table for the quotient ring R \I. c) The characteristic of a ring R with unity is n if and only if n is the smalle positive integer with n · 1 = 0. 	
 (P(U), +, ·) is a ring. b) Suppose (R; +; ·) is a ring with unity. Define addition ⊕ and multiplicati ⊙ in R as follows a⊕b = a + b + 1 and a⊙b = a + b + ab fora, b ∈ R then show that (R; ⊕; ⊙) is a ring. c) The characteristic of an integral domain is either a prime number or zero. Q-6 Attempt all questions a) Obtain all principal ideals in the ring (Z₁₂; +₁₂; ·₁₂). b) Let I = 8Z in the ring R = (2Z; +; ·) prepare addition and multiplicatio table for the quotient ring R \I. c) The characteristic of a ring R with unity is n if and only if n is the smalle positive integer with n · 1 = 0. 	
 (P(U), +, ·) is a ring. b) Suppose (R; +; ·) is a ring with unity. Define addition ⊕ and multiplicati ⊙ in R as follows a⊕b = a + b + 1 and a⊙b = a + b + ab fora, b ∈ R then show that (R; ⊕; ⊙) is a ring. c) The characteristic of an integral domain is either a prime number or zero. Q-6 Attempt all questions a) Obtain all principal ideals in the ring (Z₁₂; +₁₂; ·₁₂). b) Let I = 8Z in the ring R = (2Z; +; ·) prepare addition and multiplicatio table for the quotient ring R \I. c) The characteristic of a ring R with unity is n if and only if n is the smalle positive integer with n · 1 = 0. 	
 O in R as follows a⊕b = a + b + 1 and aOb = a + b + ab fora, b ∈ R then show that (R; ⊕; O) is a ring. c) The characteristic of an integral domain is either a prime number or zero. Attempt all questions a) Obtain all principal ideals in the ring (Z₁₂; +₁₂; ·₁₂). b) Let I = 8Z in the ring R = (2Z; +; ·) prepare addition and multiplication table for the quotient ring R \I. c) The characteristic of a ring R with unity is n if and only if n is the smaller positive integer with n · 1 = 0. 	
 then show that (R; ⊕; ☉) is a ring. c) The characteristic of an integral domain is either a prime number or zero. Attempt all questions a) Obtain all principal ideals in the ring (Z₁₂; +₁₂; ·₁₂). b) Let I = 8Z in the ring R = (2Z; +; ·) prepare addition and multiplication table for the quotient ring R \I. c) The characteristic of a ring R with unity is n if and only if n is the smaller positive integer with n · 1 = 0. 	on (05)
 c) The characteristic of an integral domain is either a prime number or zero. Attempt all questions a) Obtain all principal ideals in the ring (Z₁₂; +₁₂; ·₁₂). b) Let I = 8Z in the ring R = (2Z; +; ·) prepare addition and multiplication table for the quotient ring R \I. c) The characteristic of a ring R with unity is n if and only if n is the smaller positive integer with n · 1 = 0. 	,
 Q-6 Attempt all questions a) Obtain all principal ideals in the ring (Z₁₂; +₁₂; ·₁₂). b) Let I = 8Z in the ring R = (2Z; +; ·) prepare addition and multiplication table for the quotient ring R \I. c) The characteristic of a ring R with unity is n if and only if n is the smaller positive integer with n · 1 = 0. 	
 a) Obtain all principal ideals in the ring (Z₁₂; +₁₂; ·₁₂). b) Let I = 8Z in the ring R = (2Z; +; ·) prepare addition and multiplicatio table for the quotient ring R \I. c) The characteristic of a ring R with unity is n if and only if n is the smalle positive integer with n · 1 = 0. 	(04)
 b) Let I = 8Z in the ring R = (2Z; +; ·) prepare addition and multiplication table for the quotient ring R \I. c) The characteristic of a ring R with unity is n if and only if n is the smaller positive integer with n · 1 = 0. 	(14)
table for the quotient ring $R \setminus I$. c) The characteristic of a ring R with unity is n if and only if n is the smalle positive integer with $n \cdot 1 = 0$.	(05)
c) The characteristic of a ring R with unity is n if and only if n is the smalle positive integer with $n \cdot 1 = 0$.	n (05)
positive integer with $n \cdot 1 = 0$.	
	st (04)
O-7 Attempt all questions	
	(14)
a) Let $(R; +; \cdot)$ be a ring with unity then prove that the mapping	(05)
$\phi: (Z; +; \cdot) \to (R; +; \cdot)$, where $\phi(n) = n \cdot 1, n \in Z$ is homomorphism with	th
i) $K_{\phi} = \langle m \rangle$, if the characteristic of <i>R</i> is <i>m</i> .	
ii) $K_{\phi} = \{0\}$, if the characteristic of R is zero.	
b) Let I_1, I_2 be an ideal of ring R then show that $I_1 \cup I_2$ is an ideal of R if an	nd (05)
only if either $I_1 \subset I_2$ or $I_2 \subset I_1$.	
c) Show that $(Z; +; \cdot)$ is a principal ideal ring.	(04)
Q-8 b) Attempt all questions	(14)
c) For a non zero polynomials $f, g \in D[x], [f \cdot g] = [f] + [g]$.	(05)
b) For associate polynomials $f(x), g(x) \in F[x]$, then show that $f(x) = cg$	(x) (05)
for some $c \neq 0$ and $c \in F$.	
c) Prove that Division algorithm is not true in $Z[x]$.	(04)

